
Advanced Topics in Comp Sci Project—Sorting Algorithm Analysis

ASSIGNMENT OVERVIEW
In this assignment, you’ll implement a designated sorting algorithm, do a theoretical analysis of that
algorithm’s efficiency, collect actual performance data of your implementation, and compare your
performance data with what you predicted.

BACKGROUND
Different algorithms have different efficiencies, often expressed using Big-O Notation. Common Big O-
values for sort algorithms include
▪ O(n2) for a Bubble Sort
▪ O(n2) for a Selection Sort
▪ O(n2) for an Insertion Sort
▪ O(n log n) for a Merge Sort
▪ O(n log n) for a Quick Sort
▪ O(n log n) for a Shell Sort

These efficiencies don’t reflect how quickly the algorithm works on a given machine with a given list of
values. Big-O notation indicates how the execution time for an algorithm increases as a function of an
increasing number of values.

For example, if a Bubble Sort algorithm on your computer takes 2 millisecond to sort 50 values, how much
time would we predict it that it would take to sort 100 values? The number of values n that we’re sorting
has increased by a factor of 2, and Bubble Sort is an O(n2) algorithm, so we expect that the amount of
time it will take increases by a factor of (2)2= 4, or about 4×2 milliseconds = 8 milliseconds.

A formal strategy for predicting an algorithm’s efficiency is presented at the end of this document.

PROJECT SPECIFICATION
This project consists of four steps that you’ll need to complete in preparation for submitting a final
document, a formally written research report, submitted electronically as a PDF file. Once you have been
assigned a sorting algorithm, you’ll need to:

1. Implement the designated sorting algorithm using Python.
2. Develop a theoretical analysis of your sorting algorithm’s efficiency using an analysis as outlined in

class and at the end of this document.
3. Collect actual performance data of your implementation using Python’s time module.
4. Compare your measured performance data from (3) with what you predicted in (2).

Your final report will include a formal presentation of the work that you’ve done, including:
0. Abstact

A short one-paragraph summary of this project, what you did and what you figured out
1. Introduction

An introduction to the project
2. The Sorting Algorithm

A verbal description of your algorithm’s sorting strategy
3. Source Code

The source code of your Python script implementing that sorting algorithm, with a liberal amount
of documentation/comments.

4. Big-O Analysis
The theoretical predicted analysis of the sort’s efficiency.

5. Performance Data
Data tables from your actual performance data collected by running your program

6. Graphical Results
A graph of that data, with a regression if possible

7. Summary
A summary of your findings at the end of the report

8. References
A series of references to any sources used in the development of your project. Include people you
worked with, webpages you looked at, textbooks you read, etc.

The final report, including cover sheet, will probably be from 6-10 pages.

DELIVERABLES
sorting_algorithm_analysis.pdf

To submit your assignment for grading, copy sorting_algorithm_analysis.pdf to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• Once you know which algorithm you’ll be implementing, you’ll need to identify a reference where

you can learn about that algorithm. We’ll be investigating the original versions of these algorithms,
not versions that have been optimized by modifying them to run faster.

• Write your own Python implementation of your sorting algorithm. One of the intentions of this assignment
is for you to get practice thinking about an algorithm and figuring it out how to implement it. It’s
easy to find Python versions of these algorithms online and/or in our book, but you shouldn’t be
using these programs as a reference.

Do not use other people’s Python code as a reference in this assignment!

• Examining a pseudocode version of the algorithm may be useful if you get stuck, but your goal is
to be able to write the program from scratch. Make sure you’ve given that a try first before looking
at any pseudocode.

• Youʹll need to collect time data for a number of data sets of different sizes in order to determine
the performance of your algorithm. A spreadsheet program may be useful in organizing and
graphing this information.

• To empirically determine the performance of the algorithm, you can use the spreadsheetʹs
regression tool, possibly, although an n log n performance isnʹt easily determine. If you suspect that
your algorithmʹs performance is n log n, you might want to consider graphing time versus n log n.
What shape would you expect that curve to have if the algorithm is n log n?

• You’ll be submitting a formal written report for this assignment. Consider using one of the
following media for writing up your results:
◦ Microsoft Word / Microsoft Excel
◦ LibreOffice Writer / LibreOffice Calc (an open source alternative to Microsoft’s applications.

This document itself was written using LibreOffice.)
◦ GoogleDocs
◦ Markdown (a system for including formatting markup in text documents. You’ll still need to

use a spreadsheet/graphing application to prepare your graphs.)

◦ HTML (You’ll still need to use a spreadsheet/graphing application to prepare your graphs.)
◦ LaTeX (This is a markup language used primarily by math and physics people to present

research. This option is beyond what most people will want to use for this assignment.)
Regardless of which medium you use for writing up your results, your final submission will be a
PDF version of your report.

GETTING STARTED
1. Using an appropriate reference, identify the algorithm that you’ve been assigned to implement.

Read and study the algorithm itself, written explanations of how the algorithm works, and possibly
graphical presentations of how the algorithm operates.

2. Become familiar enough with the algorithm that you can take a list of values on paper and sort
them using the given strategy. A good gauge of your understanding is whether or not you can sit
down with someone else and explain the algorithm to them, and show them how it works on paper.

3. The implementation of your sorting algorithm probably won’t take much code. Consider including
your entire codebase into a single file. For example, a BubbleSort program might include:
a. a generate_random_numbers function to fill an array
b. a bubblesort function that sorts the array
c. a display function that can be used to display the array at any point in time (useful for

debugging)
d. a main function that calls the functions and times the bubblesort function

EXTENSIONS

1. Create an animated visual (graphical) display of your sorting algorithm. Use Python’s turtle
module or Processing’s Python module to implement your animation. (See
https://www.youtube.com/watch?v=kPRA0W1kECg for examples of what this can look like.)

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)

2. Why, exactly, is it useful for us to study sorting algorithms when Python already has a number of
very good implementations of sorts available?

3. The instructor of this course wrote a similar assignment to this one during my Computer Science
education. Sadly, copies of that assignment are no longer available. (Look up the word processor
Wordstar for further info.) What are the advantages and disadvantages of writing this report in
Microsoft Office? Google Docs? Plaintext and/or HTML?

4. Is a PDF file a stable format for preserving written documents? Why or why not?

SAMPLE ALGORITHM ANALYSIS

An algorithm’s execution time T(n) typically changes as a function of the size of the problem n. A good
way of approximating this time analytically is by counting the number of assignment operations that take place
during the execution of the algorithm. As well, for our sorting analysis, we’ll also be counting the number

of comparisons that are performed.

Examples of performing a T(n) analysis are included in our textbook.

We can get a convenient summary of a T(n) function by considering its dominant term, the value that
increases faster than everything else in that function. This term controls by an “order of magnitude” the
performance of the algorithm, and is written in “Big-O notation” as O(n) for the function.

Some algorithms have an execution time that changes only as a function of the size of the problem. Other
algorithms have an execution time that changes depending on the actual values that are being manipulated.
(Some sorting algorithms, for example, are especially efficient at sorting values that are already mostly in
order.) In the case of these algorithms, the Big-O notation will be annotated with “best case,” “worst case,”
and “average case” to indicate performance under those conditions.

