Monthly Archives: March 2018

No Textbooks for my Courses Next Year

tl;dr

I will not be using traditional, bound, textbooks for my classes next year. Instead, students will be using a combination of reading materials provided by the instructor, reference materials available online, and open source publications.

Complete text

Teachers have been asked to turn in a list of textbooks that will be used in their courses next year. This will be the first year in my 32-year teaching career that I will not be working from a traditional textbook in any of my classes.

This isn’t as big a step as it might sound, and it may be that I am in a somewhat unique position to be able to do this. For the past two years I have taught four different courses, and it is for those courses that I am making this decision.

Course-by-course analysis

AP Physics C: Mechanics, and Electricity & Magnetism

Textbooks for this course have, for a while now, been problematic. I’ve been very pleased with the textbook we use, but it’s large, heavy, and cost $411 on Follett last year. The homework problems that Craig and I assign have to be adjusted every time a new edition comes out–an increasingly frequent event–and the solutions that we provide to students have to be redone as well.

The topics of “classical” physics have not changed to warrant this kind cyclical upheaval. The cynical/realistic view of the race to release new editions is that publishers benefit when a course’s new textbook can’t be replaced by the old editions that students resell or pass on. Digital version of the book are almost as expensive and have a limited life-span: access to the digital version expires at the end of the course, and even for physical textbooks, publishers remove access to the textbook and its ancillaries once some number of years have passed–students and instructor can no longer access online materials for our 2010 8th edition of Serway & Jewett’s Physics for Scientists and Engineers.

Somewhat related to the expense issue is the question of how useful students found the text. Although I have provided references to the appropriate sections of the textbook that students can refer to as a supplement to classroom discussion, student evaluations of the textbook suggest that most students use the text primarily as a reference for homework problems–they don’t use the textbook as much for learning the content itself.

(Note: A quick glance at the Cengage website reveals that prices have come down on the 10th edition of this text. This helps to address one of my concerns, but not the others.)

I should also mention that there has been a black market version of this text, a PDF version that students have shared among themselves. While I applaud their resourcefulness, I can’t condone that strategy, and certainly can’t distribute the PDF myself, nor suggest that this is how they should acquire learning materials for our course.

The solution that I have promoted to our physics teachers is an open source one: the OpenStax organization, a non-profit based at Rice University, has published free, downloadable, textbooks (in PDF form) that students can install onto their computers. Student solution guides (PDF) are available for these textbooks as well. Printed versions of the textbook are available for a reasonable price ($48.50). These textbooks and the ancillary materials are being released under a Creative Commons license that allows for free distribution of this resource.

This solution checks all the boxes for us: free, easy-to-use (as a PDF on BYOD devices), distributable by us, and non-expiring. It’s a solid, long-term solution to a long-term problem.

Advanced Topics in Computer Science

This is the third year we’re offering the Advanced Topics in Computer Science course. The book we use for this class–Problem Solving with Algorithms and Data Structures, at $45, isn’t expensive as textbooks go, but the author and publisher have been kind enough to make available a free online version of the text as well. There are minor differences in the two texts, so this year, I began using the online version for class exclusively.

Although the printed version of this text is released under a traditional copyright, the online version has been made available as an open source document: “Problem Solving with Algorithms and Data Structures using Python by Bradley N. Miller, David L. Ranum is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.” This license explicitly allows for one to “copy and redistribute the material in any medium or format.”

What does this mean for students? I have made a copy of the online (HTML, browser-based) version of this text, and am free to make it available to students as a resource for this course. (They may use the online version as well.)

A copy of the Miller & Ranum text displayed locally in-browser

AP Computer Science A

This is perhaps the most challenging text to replace. As with physics textbooks, there are plenty of Java textbooks available, but not all of them focus on the AP Computer Science subset of material, and the ones that do exist tend to suffer from the same, multiple-editions, “re-publish early, republish-often” challenge.

In the past we’ve used the most recent version of Cay Horstmann’s excellent Big Java: Early Objects, Interactive Edition, 6th Edition, but Follet for the past two years has stated that supplies of that textbook are endangered. The Introduction to Computer Science using Java by Bradley Kjell is an online reference, updated in 2017 and released under a Creative Commons Attribution-NonCommercial 4.0 International License. While this reference doesn’t (to my reading) have the narrative flow of Horstmann’s work, it does have the benefit of being available, free, and electronic.

As an instructor with growing experience in this course, I’ve been doing what many teachers do after a few years under their belt: I’ve started to use more and more of my own materials in the course. The BankAccount class that Horstmann favors is one I find students don’t understand as well, perhaps, as the Car class that I created for them the first year I started teaching it. Exercises, activities, projects, and review activities are increasingly my own, and this is the year that we’re going to walk away from the Horstmann textbook.

Intro to Computer Science

The *Introduction to Computer Science* course was the first Computer Science course (in recent history) that I began teaching at Poly, and the one for which the curriculum is most my work. This elective course has used another Franklin Beedle offering by John Zelle, the excellent Python Programming: An introduction to computer science. At $45 it’s another reasonably-priced offering.

It’s another book, however, that students don’t seem to spend much time reading. It’s an occasional reference, perhaps, but many of the materials used in the course now are materials drawn from my own experiences teaching that course over the years. As with all the classes, I post online materials that we develop during discussions—indeed, those materials are what is displayed on the board as I present in class—so this textbook, perhaps, is the easiest one to walk away from.

Online lecture notes written by Richard White for the Intro to Computer Science course

I’m a special snowflake

The fact that I’m able to consider dropping traditional textbooks at all is due in large part to a nearly unique set of circumstances:

  1. I have a personal history of posting materials online

    My Masters in Education included an educational technology component, and since that time I’ve made it a point to put as many of my educational resources online as possible. Whether coding a website by hand or using a Content Management System (WordPress is great), I think teachers should put as many of their materials online as possible. The fact that I’ve been developing materials for my own courses for such a long time as part of that process has placed me in a better position to continue that online-publishing process.
  2. Science and technology books are appearing online
    Where I am not using content developed by myself, I am using online versions of textbooks that have been made available by others. Different fields and subject areas are putting Free and Open Source (FOSS/FLOSS) materials online at varying rates, with Science and Technology leading the way. Without ready access to those resources, this would be a much more difficult process.
  3. Open source movement
    In turn, the idea of making materials available online is thanks in large part to the [open source movement](https://en.wikipedia.org/wiki/Open-source_model). From Richard M Stallman’s GNU Project to Lawrence Lessig’s Creative Commons organization, people are starting to formalize the processes that teachers have used for years: sharing materials developed for their own students with other teachers. I also got a big kickstart in thinking about this possibility by Red Hat’s Tom Callaway who gave a powerful presentation on Education and Open Source at the 2016 Southern California Linux Expo.

What happens next?

Materials for my courses will be available online at crashwhite.com, and the process documented at hybridclassroom.com.

The demise of Pretty Good Physics

This is my fifth year teaching AP Computer Science A. More than most high school teachers, CS teachers are sometimes seen as loners: often, they are the sole teacher in their subject area at their school. The College Board has an online discussion community that displays some signs of life, fortunately, and there is a Facebook group that a number of teachers use as a resource as well.

Facebook? I know. I don’t understand that either.

This is my 20th year teaching AP Physics C. The College Board’s discussion community for that subject sees quite a bit more action than the Comp Sci one, but the real resource for that class is the Pretty Good Physics site hosted at Wikispaces. The venerable Gardner Friedlander manages that site, a section of which is password-protected so that only teachers with appropriate credentials have access. It’s a fantastic resource, perhaps unique in the College Board’s collection of communities, and the vast majority of requests for resources on the AP Physics Discussion Board conclude with a reference to Pretty Good Physics.

I’ll have to convert the paragraph above to past tense soon. Pretty Good Physics has a goodbye screen posted on their website now:

This isn’t due to any neglect or mismanagement on the part of Friedlander or anyone else. No, the entire Wikispaces platform is being shut down.

To be fair, Wikispaces is shutting down for perfectly good reasons, and in the best possible way. From the webpage:

Wikispaces was founded in 2005 and has since been used by educators, companies and individuals across the globe.
Unfortunately, the time has come where we have had to make the difficult business decision to end the Wikispaces service.

Why is Wikispaces closing?

Over the last twelve months we have been carrying out a complete technical review of the infrastructure and software we use to serve Wikispaces users. As part of the review, it has become apparent that the required investment to bring the infrastructure and code in line with modern standards is very substantial. We have explored all possible options for keeping Wikispaces running but have had to conclude that it is no longer viable to continue to run the service in the long term. So, it is with no small degree of nostalgia, that we will begin to close down later this year.

When is Wikispaces closing?

To enable us to offer maximum support to customers off-boarding from Wikispaces we will be undertaking a phased shutdown approach. This will help us regulate the system load on the export tool as users depart from Wikispaces

Scheduled Closure dates:

Classroom and Free Wikis end of service, 31st July 2018
Plus and Super Wikis end of service, 30th September 2018
Private Label Wikis end of service, 31st January 2019

There was an initial panic from people in the AP Physics community, but the site has been archived, mirrored, downloaded, and backed up by a large number of people who know very well the value of the site. I’m pretty sure that the site will arise again someday soon. There is a strong support community, and it’s too good a resource to lose.

But the loss of PGP specifically and Wikispaces in general does bring to mind a couple of questions:

  1. Was Wikispaces a poor choice for building the PGP resource? Are there better choices for building and maintaining an online academic community such as this?
  2. Does AP Computer Science have a similar, off-College Board community maintained by someone?

I’d suggest that Wikispaces turned out to be a perfectly reasonable choice for an online community given its 13-year history, a surprisingly long run in technology time. The only thing that would have been more robust would be hosting it on a private site, and that has issues associated with it as well.

And if AP Computer Science has a similar community, I’m unaware of it. Gary and Maria Litvin have built a nice following around the work that they do at Skylight Publishing, and they regularly reply to questions on the College Board Discussion board. The Facebook group at https://www.facebook.com/groups/APComputerScienceTeachers/ (login required) is… hosted at Facebook, a decision that I reject for a whole set of Facebook-related reasons.

I’ve seen other non-AP Comp Sci efforts to gather materials and references for people, including Awesome Python in Education, hosted at github—perhaps that Open Source platform is the new, best choice for something like this. For the moment, however, Computer Science in general doesn’t seem to have settled in on a focal point that is clearly identifiable.

Is this due to the nature of our subject? Is it because we tend toward the Lone Wolf end of the spectrum?

While we’re figuring this all out, perhaps the best strategy for providing ongoing access to content is to Own Your Own Domain.

DIY for the win!

References
http://doug-johnson.squarespace.com/blue-skunk-blog/2018/2/26/so-long-wikispaces-youve-been-a-great-tool.html